Group II metabotropic glutamate receptors regulate the vulnerability to hypoxic brain damage.

نویسندگان

  • Alessandro Poli
  • Alina Beraudi
  • Luigi Villani
  • Marianna Storto
  • Giuseppe Battaglia
  • Valeria Di Giorgi Gerevini
  • Irene Cappuccio
  • Andrea Caricasole
  • Mara D'Onofrio
  • Ferdinando Nicoletti
چکیده

We examined the expression of metabotropic glutamate (mGlu) receptors in species of fish that differ for their vulnerability to anoxic brain damage. Although expression of mGlu1a and mGlu5 receptors was similar in the brain of all species examined, expression of mGlu2/3 receptors was substantially higher in the brain of anoxia-tolerant species (i.e., the carp Carassius carassius and the goldfish Carassius auratus) than in the brain of species that are highly vulnerable to anoxic damage, such as the trouts Salmo trutta and Oncorhynchus mykiss. This difference was confirmed by measuring the mGlu2/3 receptor-mediated inhibition of forskolin-stimulated cAMP formation in slices prepared from the telencephalon of C. auratus and S. trutta. We exposed the goldfish C. auratus to water deprived of oxygen for 4 hr for the induction of hypoxic brain damage. Although the goldfish survived this treatment, the occurrence of apoptotic cell death could be demonstrated by terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling staining and by the assessment of caspase-3 activity in different brain region. The extent of cell death was highest in the medulla oblongata, followed by the optic tectum, cerebellum, and hypothalamus. No cell death was found in the telencephalon. This regional pattern of hypoxic damage was inversely related to the expression of mGlu2/3 receptors, which was lowest in the medulla oblongata and highest in the telencephalon. Treatment of the goldfish with the brain permeant mGlu2/3 receptor antagonist LY341495 (1 mg/kg, i.p.) amplified anoxic damage throughout the brain and enabled the induction of cell death by anoxia in the telencephalon. In contrast, treatment of the goldfish with the mGlu2/3 receptor agonist LY379268 (0.5 or 1 mg/kg, i.p.) was highly protective against anoxic brain damage. Finally, exposure to the antagonist LY341495 (0.5 microm) greatly amplified the release of glutamate induced by hypoxia in slices prepared from the medulla oblongata and the telencephalon of the goldfish. We conclude that expression of mGlu2/3 receptors provides a major defensive mechanism against brain damage in anoxia-tolerant species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

Metabotropic glutamate receptors and their ligands applications in neurological and psychiatric disorders

Metabotropic glutamate receptors (mGluRs) consist of a large family of G-protein coupled receptors that are critical for regulating normal neuronal function in the central nervous system. The wide distribution and diverse physiological roles of various mGluR subtypes make them highly attractive targets for the treatment of a number of neurological and psychiatric disorders. The discovery of ...

متن کامل

Glutamate-mediated excitotoxicity in neonatal hippocampal neurons is mediated by mGluR-induced release of Ca++ from intracellular stores and is prevented by estradiol.

Hypoxic/ischemic (HI) brain injury in newborn full-term and premature infants is a common and pervasive source of life time disabilities in cognitive and locomotor function. In the adult, HI induces glutamate release and excitotoxic cell death dependent on NMDA receptor activation. In animal models of the premature human infant, glutamate is also released following HI, but neurons are largely i...

متن کامل

Neutrophil-derived glutamate regulates vascular endothelial barrier function.

Endothelial barrier function is altered by the release of soluble polymorphonuclear leukocyte (PMN)-derived mediators during inflammatory states. However, endogenous pathways to describe such changes are only recently appreciated. Using an in vitro endothelial paracellular permeability model, cell-free supernatants from formylmethionylleucylphenylalanine-stimulated PMNs were observed to signifi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 23 14  شماره 

صفحات  -

تاریخ انتشار 2003